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E Q U I L I B R I U M  P R O B L E M  OF A P L A T E  W I T H  AN O B L I Q U E  C U T  

V. A. Kovtunenko,  A. N. Leont'ev, and A. M. Khludnev UDC 539.3 

The nonpenetration condition for a plate with an oblique cut is proposed. The variational 
formulation of the equilibrium problem and the equivalent formulation in the form of a boundary- 
value problem are obtained. The analytical solution is given for a one-dimensional case ( a beam 
with a cut), and the qualitative properties of this solution are studied. 

I n t r o d u c t i o n .  The presence of a cut in a plate means that in addition to the outside edges, the plate 
has inside ones, which are called cut faces. In an undeformed state, the cut faces are in contact with each other 
everywhere along the two-dimensional surface, determining the shape of the cut. If, for the external faces, 
one can impose, for example, a jam condition, then for the cut faces, it is natural to assume the possibility of 
contact along the cut surface and to require their mutual nonpenetration. The restrictions that characterize 
this class of displacements of the points of the cut faces will be called a nonpenetration condition. This 
condition can incorporate the friction between the cut faces during their contact as well. 

One can use the term crack instead of the term cut, assuming that the crack has a zero opening in an 
undeformed state. However, attention in the existing theory of cracks is mainly focused on the problems of 
crack propagation and the determinations of the quantities that characterize the deformed state [1]. In this 
case, the boundary conditions considered at the crack sides usually imply violation of the nonpenetration 
condition [2]. 

We consider the problem of finding the displacement field of the cut-containing plate's points with 
allowance for the nonpenetration condition, which leads to the variational and boundary-value formulations. 
As the analytical and numerical results obtained by Kovtunenko [3, 4] show, taking into account the 
nonpenetration condition changes significantly the qualitative character of the solution for thin plates 
(Kirchhoff model). 

The problems with cuts have wide applications not only in designing structures, but, for example, 
in geology: cuts can simulate faults of tectonic plateforms described by thin plates in tectonics [5]. The 
nonpenetration condition for thin plates with cuts and the variational formulation of the equilibrium problem 
with a cut were proposed and studied by Khludnev and Sokolowski for the first time [6]. Khludnev [7] 
considered a cracked shell and studied control in the problem in which a crack opening serves as the optimality 
criterion. The contact problem for a cracked plate with a rigid punch was studied in [8]. An analytical solution 
for the one-dimensional case (for the problem of a beam with a cut) was constructed in [3]. An algorithm for 
numerical solution of the problem of a plate with a cut was proposed in [4]. 

In the present paper, a nonpenetration condition for a plate with an oblique cut that generalizes the 
case of a vertical cut is proposed. Variational and equivalent differential formulations of the problem are 
given. The problem is solved analytically for the one-dimensional case (a beam with a cut), and qualitative 
properties of the solution are examined. 

1. N o n p e n e t r a t i o n  Cond i t ion .  We denote the horizontal and vertical displacements of the points 
z = (zl,z2) of the plate's median plane fl by W ( z )  = (ul(z) ,u2(x))  and w(x),  respectively. Here fl C R 2 is 
the bounded domain with a smooth boundary. Let 2h be the plate thickness. According to the hypothesis of 
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Fig. 1 

straight normals, adopted in the theory of thin plates, the vertical displacements w(x, z) of the positions of the 
plate which are at a distance z from the middle plane are considered equal to w(x); horizontal displacements 
in a z-linear approximation are found from the relations [9] 

W(z,  z) = W(x) + zVw(z),  Izl ~< h. 

Let the plate have a zero-width cut which is through over the thickness and does not reach the 
lateral boundaries and which is described by a sufficiently smooth surface F having no self-crossings (Fig. 
1). Introducing the vector of unit normal n(x, z) at each point (z, z) E F, we define the positive r + and 
negative F-  cut faces. We denote the angle between n(x, z) and the middle plane 12 by a(x,  z), the curve 
obtained by the intersection of F and 12 by 7, and the middle plane of the plate with a cut by 12"t- Next, 
we define the unit vector (tq (x), vz(z), 0), whose direction coincides with the projection of n(x, 0) onto ~'t, 
and introduce the notation v = (vl, v2). We then have n(z, 0) = (u(z) cos a(x,  0), sin a(z ,  0)). Let l'Ix be the 
vertical plane passing through the point x E 7 in the direction of n(x, 0) and Cz be the section obtained in 
intersecting Hx and F. We assume that the segment Cz is rectilinear in each cross section of IIz. We then have 
n(x, z) = n(x, O) = n(z) and a(z,  z) = a(z, O) - a(x) Vz ([z[ <~ h), and the coordinates (~, z) of the points of 
the surface F are found from the relations ~ = x - zu(x)tan a(x) and Iz[ <~ h, x e 7. Displacements of the 
middle plane's points at the positive (negative) face are denoted by W+(z) and w+(x) [respectively, W - ( z )  
and W-(X)]. 

In deriving displacement conditions for points F + and F'-, we assume the angle a to be sufficiently 
small. After this, we can assume, in the z-linear approximation, that all the points of the segment Cz have 
the same horizontal and vertical displacements, depending on the cut faces, and we set 

z)  = w+(x ) ,  x e 7, z)  = w + ( x )  + zvw (x), Izl h, x e 7. 

The nonpenetration condition for the cut faces F + and F-  consists of the fact that the difference between their 
displacements at each point (~, z) in the projection onto the normal n(x) should be nonnegative. Denoting 
[W(x)] = W+(x) - W - ( x )  and [w(x)] = w+(x) - w-(x) ,  z e 7, we write this condition as a scalar product: 

o r  

( [w]  + z [vw] ,  [w]) �9 n/> o Vz(Izl ~< h) at each point x E 7, 

( Ow) [ 8w] . (n ,  zcosoO>~O ([z[~h)  ateachpoint Z E T .  (1.1) --- 

Here [W, w, Ow/Ou] = ([W], [w], [Oio/Ou]) and Ow/Ou denotes the normal derivative on 7. We note that if the 
inequality (1.1) holds for z = =l=h, it is satisfied for all z, Izl ~< h owing to its linear character in z. Thus, 
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condition (1.1) can be written in the equivalent and z-free form: 

( ,.,, ro ll W,w,-~v - [ W ] - v + [ w ] t a n ~ -  [OvJ />0 at each point xE3' .  (1.2) 

For a(z) = O, we obtain, from (1.2), the known nonpenetration condition for a strictly vertical cut [6]: 

h[O l I [W]. v/> [ Ov J at each point x E 7- 

Thus, condition (1.1) [or (1.2)] describes, in the z-linear approximation, the interaction of the faces of an 
oblique cut, admitting its contact (the equality case) or the absence of contact (the inequality case) at some 
previously unknown segments, and simultaneously excludes the mutual penetration of the cut faces. 

2. Varia t ional  Formula t ion  of the  Prob lem.  Under the smallness conditions for deformations, the 
energy functional of an isotropic plate whose middle plane occupies the domain fly is of the form [9] 

J(W,w) = A(W,W)+ -~3(w,w)- ((F,f),(W,w))n, 

where (-, ")n refers to integration over the domain fly; 

f( 1 - ~ e  ) A(W, IV) = g u1,,~1,, + u2,2~m + ~(u1,,~2,2 + u2,2~,1) + ~ (u~,2 + u24)(~1,2 + ~2,,) dS2.r; 
t2.y 

~B(w, ~)  = D / ( w , n  ~,11 +w,22 ~,~2 +~ew,ll ~,22 +~ew,22 ~,11 +2(1 - ~e)w,12 ~,12 )dS%; 
ft-v 

D = EhS/3(1 - ,~ ) ,  (7 = Eh/ (1  - ~ ) ,  E is the Young modulus, ~ is the Poisson ratio (0 < ~e < 0.5), 
(F , [ )  is the vector of external forces, F = (]1,]2), and W = (~1,~2). The subscript after the comma refers 
to differentiation with respect to the corresponding coordinate. 

We specify the conditions at the external boundary of the domain 12~: W = w = cgw/cgu = 0. Here the 
normal derivative aw/av refers to the external boundary of the domain fly. In the curve 7, we require the 
satisfaction of the nonpenetration condition for the cut faces: '~z(W,w, Ow/Ov) >1 0 Vz, Izl <~ h. 

Let H01,.r be the subspace of the Sobolev space H '  (12-r which consists of the functions vanishing at 
the external boundary of the domain f~-~, and H0~,.r(fl.r) be the subspace of the Sobolev space H2(f~.f) which 
consists of the functions vanishing together with the first derivative at the external boundary of 1%. 

We introduce the space H = H0',~(f~) x H],~(f~) x H 0 ~ ( ~ )  and the set K = {(W,w) 
H I~,(W, ~, Ow/O,,) /> 0 W, Izl ~< h}. It is then possible to consider the nonpenetration condition almost 
everywhere in 7. We shall assume that F ~ L2(f/-f) x L2(fl~), f ~ L2(l%). The equilibrium problem of a plate 
with the cut 9' under the condition of mutual nonpenetration can be formulated as a minimization problem: 

inf J(W,w) = J(W*,w*). (2.1) 
(W,,~)eg 

The functional J is coercive, weakly semicontinuous from below, and strictly convex on H. The set K coincides 
with the closed convex set {(W, w) e H I@(W, w, cgw/cgu) >t 0} owing to the equivalence of (1.1) and (1.2). 
Hence, the minimization problem (2.1) has a unique solution [10], which is denoted by {W*, w*}. 

~1. Formula t ion  in the  Form of a Boundary-Value  Problem.  We introduce the strain tensor 
eii(W) = (1]2)(ui,l + ui,i) ({, j = 1). According to Hook's law, the stress tensor aij(W) (i, j = 1) is of the 
following form for a homogeneous isotropic plate: 

O'll(W) -~- (7(ell(W) q- ~t~22(W)), 0"22(W) -- (7(e22(W) -]- ~t~ll(W)), o'12(W) -- (7(I - ~)612(W). 

We determine, in 7 +, the stress a,+(W) = (O'lj(W+)vj, o'2j(W+)vj), the transverse force 

t+ (w)  = o a , , ,  + + (1 - ~)  -b--~ / '  
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and the bending moment 

cO2w+ '~ 
m+(w) = D(aeAw + + (1 - ze) -~-v2 ] ,  

where r = (-v2,  Vl) and Aw -- W,ll +w,22. Using the values of W -  and w-  and selecting the negative 
direction of the normal ( - v ) ,  we define a - ( W ) ,  t - (w) ,  and re-(w) on 7 -  similarly. 

Let the solution of problem (2.1) be sufficiently smooth, so that  

G+(W) e L2(7) x L2(7), t+(w), m+(w) e L2(7). (3.1) 

As in [7], one can show that  the conditions [a(W*)] = [t(w*)] = [m(w*)] = 0 are satisfied on 7- We denote 
a' - a •  t* = t~(w*), and m* -- m~(w*). 

For the case considered, the existence of the solution of problem (2.1) is equivalent [10] to the existence 
of the Lagrange factor { e L2(~) (~/> 0 almost everywhere on 7) such that 

(3.2) 
V(W, w) E H, Vz, Izl ,< h. 

Here 

( ~ , r  cOt~)> = 0 ,  (3.3) 
' "ff~v 

where (-,.)~ denotes integration over the curve 7. Using the Green formula, one can write the minimum 
condition (3.2) in the equivalent form owing to the convexity of J and the linearity of (~z with respect to W 
and w: 

cOw + <(o.,,., m.), 

v ( w , w )  e H, Vz, kl < h. 

(~, r  Ow 

(3.4) 

Here the operators A and B have the form AW* = - ( a l j , j ( W * ) , a 2 j , j ( W * ) )  and Bw* = DA2w *. The 
variational equality (3.4) means that  the equilibrium equations are satisfied everywhere in fir: 

-ai j , j (W*) = fi ,  i = 1, 2, DA2w * = f ,  (3.5) 

and the following equality is satisfied almost everywhere in the curve 7: 

( a*, t*, m*) =_ ~(n, z cos a ). (3.6) 

Multiplying, in a scalar manner,  both sides of (3.6) first by the vector (n, z cos a) and then by an arbitrary 
orthogonal vector (n, z cos a ) •  and taking into account that  ~ /> 0, we obtain almost everywhere on 7 Vz 
(Izl <- h) 

(a*, t*, m*)-  (n, z cos a) />  O, (a*, t*, m*).  (n, z cos a)j .  = O. (3.7) 

With allowance for (3.6), equality (3.3) can be written as 

ow.] ((a',t',m'),[w',w', 0 1) =0. (3.s) 
Thus, if the solution {W*, w*} of the equilibrium problem for a cracked plate is subject to condition (3.1), 
both formulations [in the form of the minimization problem (2.1) and the boundary-value problem (1.2), (3.5), 
(3.7), and (3.8)] are equivalent. Conditions (1.2) and (3.6) are linear with respect to the parameter z, ]z I ~ h. 
This means that  they should be satisfied for z = h and z = - h  and, on the cut, they take the form 

aii(W*)vivi tan a + t* = 0, aij(W*)vjri = O, 
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Fig. 2 Fig. 3 

m, rato,] aij(W*)vjui([u*]u{ + [to*] tan a) + L au J -- O, (3.9) 

I h ra' '1 

4. F o r m u l a t i o n  of  t h e  B e a m  P r o b l e m .  We shall consider a homogeneous isotropic beam of unit 
length and thickness 2h. Let the median line of the beam occupy the segment (0, 1) on the x axis. At the 
point y = 0.5, there is an oblique cut passing at the angle a to the vertical (Fig. 2). We assume that the cut 
does not reach the boundary, i.e., 0 <~ tan a < 1/2h. We look for the functions u(x) and to(x) of the horizontal 
and vertical displacements of the median points under the external load [g(x) and f(x)]  (Fig. 3). The j'am 
condition u = to = to, = 0 at x = 0 and 1 is imposed at the external boundary. The condition of mutual 
nonpenetration of the cut faces takes the form [u] + [to] tan a />  h[[to=][, where Is] is the jump of the function 
s at the point y, i.e., Is] = s(y + 0) - s(y - 0). The beam's energy functional is 

J(u, to) = [ ~ + 
o 

We denote t'l = (0, y) O (y, 1). We then introduce the Hilbert space 

H = {u e H'(a),w e H2(a)I u = to = w= = 0 for x = 0 and i} 

and the closed convex set 

K = {(u,w) e HI[=I + [to] tan a >/hl[~=ll}. 

Let f and g be specified functions from L2(f~). The equilibrium problem of a beam with an oblique 
cut (2.1) is formulated as the variational inequality 

+Dwxz(ffJ,.= -wz=)  - g ( ~ - u )  - f ( ~ - w ) ) d x  >t 0 V(fi,~) E K. (4.1) 
fl 

We introduce the differential formulation of problem (4.1). To do this, we use the following Green 
formula: 

+ Dtox=tb,.x)dz = + Dw,.z=ze)dz - G[u=fi] - D[tozz~z] + D[wzz,e].  
fl  f l  

After that, the variational inequality (4.1) can be represented in the form 

/ ( C - G , , = =  - g ) (~  - , ,)  + (Dto==== - f ) ( , ~  - to))  d=  
fl 

-G[u=(~-u)] - D [ t o = : ( ~ , -  -to=)]+D[w=::(ff~-w)] >1 0 V(~,, t~) e K .  

We take fi = u + ( and tb = w +' q, where ~, q E C~~ Since (u, to) E K by definition and (~, ~/) E K, 
choosing in turn ~ = 0 and q = 0, we obtain that the equations -Gu== = g and Dw==** = f are fulfilled in 
the domain ft. Now we take ~, r /E C~~ 1) and [~] = [q] = [r/x] = 0 and ((y) = a, ~(y) = b, and q=(y) = c. 
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Choosing in turn the zero values for arbitrary a, b, and c, we have [u,] = [wxx] = [wxzz] = 0. We define the 
auxiliary functions 

qa+(u, w) = [u] + [w] tan a + h[wx], qo-(u, w) = [u] + [w] tan a - h[wz]. 

It follows that the initial nonpenetration condition is equivalent to the inequalities qa+(u,w) >>. 0 and 
T-(u ,  w)/> 0. Clearly, the constructed functions are linear in their arguments. We note that 

[w~] = ~+(u,  w) 2h- qa-(u, w) , [u] + [w] tan a = qa+(u, w) +2 qo-(u, w) 

Taking into account the equations derived, we represent the variational inequality (4.1) in the new notation 
in the form 

1 /Gu 1 
Dwx~(y))qo+ ( fi - u, ~ - w) 

1 (Gux(y) - u ,  co- w) >. 0 Y(fi, ~) E K. (4.2) --2 -1Dwz~(Y) )  ~~ 

Choosing fi = u + ~ and ~ = w + r/ such that qo+(~,r/) = 0 and ~o-(~,r/) - 0 for arbitrary [r/] = c, we 
obtain ux(y)tana + (D/G)wxzz(y) = O. Now we choose ~ and r/ such that ~0-(~,77) = 0. For arbitrary 
~+(~, 77) = c >/O, we have 

i o 0, 

and, hence, ux(y) + (D/Gh)wxx(y) <~ 0 and u::(y) - (D/Gh)wxz(y) <~ O. Since (0,0) E K, one can use 
(fi, ~) = (0, 0) in (4.2). This yields the inequality 

(Gux(y) + Dw~,z(y))%o+(u,w) + (Gu:r(y) >10. 

Since (u, w) 6 K, we have 2(u, w) E K. We take (fi, ,h) = (2u, 2w) and, substituting it into (4.2), we obtain 

- -(Gu,,(y) + Dw:::(y))~o+(u,w)- (Gu~(y) w) >>. O. 

The following relations follow from the last two inequalities and the fixed signs of the cofactors: 

D w**(y))~o-(u,w) = O. 
+ T 

Thus, we have proved the following theorem. 
T h e o r e m  1. The variational inequality (4.1) /s equivalent to the boundary-value problem 

-Gu~x = g, Dwxx~x = f in f~, [u,] = [wx,] = [wxxx] = O, 

h 2 h 
ux(y) tan a + T wzxx(y) = 0, In] + [w] tan a t> hl[wx]l, -ux(y) >i "~ [wxx(y)l, (4.3) 

= hwzz(y))([u]+[w]tan~+h[wx]) O, (uz (y ) -  ([u]+[w]tana-h[wz])=O. + g 

Adding the last two equalities, we obtain the equivalent relation 

h 2 
ux(y)([u] + [w] tan a) + T wxx(y)[wz] = O. 

In this form, the boundary conditions of Theorem 1 are an analog of (3.9) for the one-dimensional domain. 
5. C o n s t r u c t i o n  of  t h e  Solu t ion  of  t h e  B e a m  P r o b l e m .  If we construct the solution of problem 

(4.3), we thus have the solution of the initial inequality (4.1) owing to its uniqueness. We note that it is 
convenient to seek the solution in the form of the sum u = u ~ + u 1 and w = w ~ + w 1 of the solutions of the 
inhomogeneous problem with zero boundary conditions 

0 -Gu~ = g, Dwz.~ = f in 12, 
(5 .1 )  
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[uO] [wOA 0 uO(v) w 0 ( u )  0 = -- [w= , ]  0, = = = = w = ~ ( v )  0 

and the homogeneous  p rob lem with nonzero condit ions at the point  y. It is clear tha t  the solution (u ~ w ~ 
(H2(fl)  x H4(~))NH of p rob lem (5.1) exists, and it is unique,  since we solve as a m a t t e r  of fact two independent  
problems on (0 ,y)  and (V, 1): 

0 - G u ~  D w ~ z z , = f  in (0, y), 

u~ = w~ = w~ = 0, 

u~ = w~ = w~  = o, 

0 -Gu~ = g, Dwrzz,, = f in 

u~ = w~ = w~ = 0, 

u~ = w~ = w ~  = o 

(y, 1), 

We note tha t  (u ~ w ~ is the  solution of the  problem of a beam with a cut for which the  nonpenet ra t ion  
conditions are not  imposed  and  the  faces are assumed to be free. 

For convenience,  we in t roduce  the  following constants:  6 = 12h 2 and p = 4h 2 + tan 2 a.  
Having solved p rob lem (5.1), one can calculate the  quanti t ies  

r = [u~ + [w~ tanc~ + h[w~ ~o- = [u~ + [w~ t a n a -  h[w~ 

h p  r 01 
r  = [u ~ + [w ~ tan  a + -~- twzl , r  = [u ~ + [w ~ tan  a - [w~ 

We introduce the  following funct ions into our consideration: 

0(x) = { x2, z E ( O , y ) ,  0x(z) = { 2x, z E ( O , y ) ,  
iX --  1) 2 , X e (y ,  1), 2(X --  1), 3g e (y ,  1), 

2x s - 3z 2, z E (0, y), 

Z ( x ) =  2x 3 3~ ~ + 1 ,  ~ e ( v , 1 ) .  

The  pairs (Oz, 0) and  ($z, 3)  belong to the  space (C~176 2 N H,  and the  relations 

o = ( ~ )  - 2, o = , ( ~ )  - o, [o] = o, [o~] = - 2 ,  & ( ~ )  = 6(~ ~ - ~), 

/~zz(x) = 6 ( 2 x -  1), 3***(x) = 12, fl***x(x)-= 0, [3] = 1, /~, , (y)  = 0, [#x] = 0 

hold. Here, as before, y = 0.5. 
T h e o r e m  2. The functions u(x) = u~ + 2hUAOz(x) and w(x) = w~ + 6hBO(x) - A/~(x) tana are 

the solution of the variational inequality (4.1), where 

(o ,o) ,  il  ~o+ >~o, ~o- >~o, 

( A , B ) =  ( 6 + P ) - 1 ( ~ + ' ~ + ) '  if ~ o + < 0 ,  r  
(6 + p)-1 (~- ,_~0-) ,  if ~,- < 0, r  i> 0, 

( ( ~ + + ~ - ) 1 2 p , ( ~ + - ~ - ) 1 2 6 ) ,  i/  r  r  

P r o o f .  It  is sufficient to  check condit ions (4.3). Indeed,  by vir tue of the  noted  propert ies  of the  functions 
0 and 3, we have 

- G u x z  = - G u ~  - G2h2AOzzz = g - 0 = g in 12, 
0 Dwzzzz = Dwxzzz + D6hBOxzzz - DA3zzzz tan  a = f + 0 - 0 = f in 12, 

[uz] = [u~] + 2h2A[Ozz] = 0, [wxz] = [w~z ] + 6hB[Ozz]- A[/3zz] t a n a  = 0, 

[wzxz] = [w~ + 6hB[Orzz] - A[3ztz] tan  a = 0. 

Now we calculate the  following quant i t ies  for the  functions constructed:  

uz(y) = u~ + 2h2AOzz(y) = 4h2A, w,.z(y) = w~ + 6hBOzz(y) - A13~r(y) tan  cr = 12hB, 

w,,.r(y) = w~ + 6hBOz,.~(y) - A3~r (y )  tan  a = - 1 2 A  tan  a .  
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Then 
h h 2 

u,(y) + -5 ~=(~)  = 4h2(A • B) ,  u , (y )  tan ~ + 3 -  ~===(~) = 0. 

Next, [u] = [u ~ - 4 h 2 A ,  [w] = [w ~ - A tan a, and [w,] = [w ~ - 12hB, which yields [u]-J-[w] tan a t" h[w=] = 

~+ - pA T ~B.  
Hence, it remains to check that 

(A  + B)(qo + - pA - 6B)  = O, (A  - B ) ( ~ -  - pA + ,~B) = O, 

~+ >1 pA + ~B, 

Four variants are possible: 

1) A +  B = 0, A -  B = 0, 

2) A + B < 0 ,  A - B = O ,  

3) A +  B = 0, A -  B < 0, 

4) A + B < 0 ,  A - B < 0 ,  

~ -  >1 pA - 6B,  - A  >1 [BI. 

~ +  - p A  - 6 B >1 O, 

r - p A  - 6 B  = O, 

r - p A  - 6 B  >1 O, 

~ +  - p A  - 6 B  = O, 

r - pA + ~B >i O, 

r - p A + ,~ B >1 O, 

r - p A  + 6 B  = O, 

~o- - p A  + 6 B  = O, 

which give the desired values of the constants A and B. The theorem is proved. 
R e m a r k  1. It is easy to see that the solution (u, w) belongs to the space (H2(fl) x H4(fl)) gl H owing 

to the smoothness of the functions u ~ w ~ 8, and ft. 
R e m a r k  2. The constructed functions g and fl give a correction associated with the imposition of 

the nonpenetration condition for the solution (u ~ w ~ of the beam problem with free faces. Here u = u ~ and 
w = w ~ (i.e., A = B = 0) only in the case ~+/> 0 and ~ - / >  0. 

R e m a r k  3. Having found the solution of problem (4.1), we can calculate the remaining physical 
characteristics of the problem. Here the stresses and strains 

the bending moments 

a(x)  =c~_~(x) =zeuz(x) = ~ ( u ~ ( x ) + 4 h 2 A ) ,  

re(x) = D~ewz~(x) = Dm(w~ + 12hB - 6A(2z - 1) tan a)  

and the transverse forces 

t (x )  = Dwz=~(x) = D(w~ - 12Atan a) 

are continuous functions on (0, 1). 
Now we deduce some corollaries from Theorem 2 for particular cases. Let a = 0; then we have a 

vertical cut, and the nonpenetration condition takes the form [u] /> h][wx]l. The corresponding boundary- 
value problem (4.3) for the variational inequality (4.1) takes the form 

-Gu== = g, Dw=xx= = f in ~2, 

(u=l = [w~]  = [w=~=] = 0, ~ = = ( y )  = 0, 
(5.2) 
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h \ / h 
w = ( y ) / ( [ u ] -  h[w~]) = 0, 

h 
[u]/> hl[w~]l, -u=(y) />  ~ Iw=(y)l. 

According to Theorem 2, for the introduced quantities ~:1: = [u 0] q_ h[w o/ and ~•  = [u ~ 4- (h/3)[w~ the 
following corollary holds. 

C o r o l l a r y  1. The functions u(x) = u~ + (A/2)O=(z) and w(z) = w~ + (3B/2h)O(x) are the 
solution of problem (5.2), where 

(0,0), if ~+ >>.0, ~ -  >>.0, 

( A , B ) =  (1/4)(qa+'~+) '  if ~ + < 0 ,  r  
( 1 / 4 ) ( ~ - , - ~ - ) ,  if ~ -  < 0, r  t> 0, 

(@+ + ~ - ) /2 ,  @+ -- ~ - ) / 6 ) ,  if r  < 0, r  < 0. 

6. B e a m  w i t h  a n  O b l i q u e  C u t  u n d e r  H o r i z o n t a l  Loads .  We assume that  the vertical loads are 
zero, i.e., f ( z )  =- O. We then  obtain w~ =- O. Hence, ~+ = ~ -  = r  = r  = [u ~ and B = 0. 

We denote the positive and negative parts of the number by plus and minus signs, respectively, i.e., 
s = s + - s - ,  s+,s - >1 O, and s+s - = O. From Theorem 2, one can deduce 

C o r o l l a r y  2. For f = O, the functions 

2h 2 [~0]_0=(x), ~(=) = tan___._. [~01_~(=) "(=) = "~ 7 p 

are the solution of the variational inequality (4.1). 
Thus, nonzero vertical displacements can arise in this case because of horizontal loads. For a vertical 

cut (a = 0), the condition f = 0 entails w = 0. 
As an illustration, we consider the external load specified as a function 

c, z ~ ( 0 ; 0 . 5 ) ,  

g(x) = - c ,  = e (0.5; 1), 

which corresponds to compression for c >/0 (Fig. 4). After that ,  one can calculate the function u~ (Fig. 5): 
u~ = [(1 - ~) / (2Eh)]x (1  - x)g(x). Its jump [u ~ = -c(1  - ae2)/(4Eh) is not positive, i.e., [u~ - = 
c(1 - ae~)/(4Eh). According to Corollary 2, we find a solution of the variational inequality (4.1) in the form 

u(x) = c(1  _~) { - z 2  + ( 1 - ~ / 6 p ) x ,  zE(O;O.5),  
x 2 - (1 + 6/6p)x + 6/6p, x E (0.5; 1), 

c ( 1 - e e 2 ) t a n a j  ' 2 x a - 3 x  2, x E ( 0 ; 0 . 5 ) ,  
w ( x ) ~  

4Ehp ~ 2x 3 - 3z 2 + 1, z E (0.5; 1). 

The graph of the function w(x) is depicted in Fig. 6; we note that  [w] = c(1 -~e  2) tan a/(4Ehp). For extension 
(i.e., at c < 0), we obtain [u ~ > 0 and, hence, [u~ - = 0 and u(x) = u~ and w(x) = O. 

This work was suppor ted by the Russian Foundation for Fundamental  Research (Grant No. 97-01- 

00896). 
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